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Some antipsychotic drugs are known to cause valvular heart disease by activating serotonin 5-HT2B

receptors. We have developed and validated binary classification QSAR models capable of predicting
potential 5-HT2B actives. The classification accuracies of themodels built to discriminate 5-HT2B actives
from the inactives were as high as 80% for the external test set. Thesemodels were used to screen in silico
59 000 compounds included in the World Drug Index, and 122 compounds were predicted as actives
with high confidence. Ten of themwere tested in radioligand binding assays and nine were found active,
suggesting a success rate of 90%. All validated actives were then tested in functional assays, and one
compound was identified as a true 5-HT2B agonist. We suggest that the QSARmodels developed in this
study could be used as reliable predictors to flag drug candidates that are likely to cause valvulopathy.

Introduction

During the past decade, several drugs have been shown to
cause cardiac valvulopathy in humans. The initial discovery of
drug-induced valvulopathy occurred when the anorectic drug
fenfluramine (approved by the FDA in 1973), one of the active
ingredients of the anorectic drug combination fen-phen, was
found to increase the risk of developing two potentially serious
conditions, pulmonary hypertension and valvular heart disease
(VHDa), in individuals receiving these medications to treat
obesity.1 More recently, a group at the Mayo Clinic reported
VHD in patients taking the anti-Parkinson drug pergolide.2

After the initial 2002 report, other cases ofVHDassociatedwith
pergolide or other dopamine agonists such as cabergoline used
as anti-parkinsonian drugs were identified.3-5 In January of
2007,TheNewEngland Journal ofMedicine published two large

European studies that independently verified the association of
VHD with pergolide and cabergoline.6,7 Finally, on March 29,
2007, theFoodandDrugAdministration issuedaPublicHealth
Advisory for the voluntary market withdrawal of pergolide.
These stunning withdrawals of drugs from the market stressed
the importance of elucidating the mechanism by which these
drugs induce valvulopathyandofdetermining the valvulopathic
risk that may be associated with new drug candidates or even
existing drugs.

To date, all but two of the VHD-associated drugs are
ergoline derivatives (dihydroergotamine, methysergide, per-
golide, and carbergoline) (see Table 1). The two non-ergoline
VHD-associated drugs are fenfluramine1 and 3,4-methylene-
dioxymethamphetamine (MDMA, ecstasy),8,9 both of which
are amphetamine analogues (see Table 1). Thus, it appears
that compounds from both the ergoline and phenylisopropy-
lamine families can produce VHD.10

There is increasing evidence that activation of serotonin 2B
receptors (5-HT2B) may play a significant role in the patho-
genesis of drug-induced valvulopathy.11-13 For instance,
VHD-associated drugs such as fenfluramine,14 ergotamine,14

pergolide,9,15 and cabergoline, and/or selected active metabo-
lites (such as norfenfluramine and methylergonovine),14 all
potently activate 5-HT2B receptors. Chemically similar med-
ications that do not activate 5-HT2B receptors (e.g., lisuride)
seemingly do not cause valvular heart disease, further impli-
cating the 5-HT2B receptor (but not other receptors that bind
ergopeptines/ergolines and phenylisoproylamines with high
affinity) in the pathogenesis of heart-valve disease.13

Additionally, valvulopathy-associated drugs have been
shown to induce DNA synthesis in cultured interstitial cells
from human cardiac valves via 5-HT2B receptor activation.9
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It has been suggested that the valvulopathy induced by
5-HT2B receptor agonists is caused by the inappropriate mito-
genic stimulation of normally quiescent valve cells, resulting in
an overgrowth valvulopathy.9,13 Although the precise signaling
pathways underlying drug-induced valvulopathy remain elusive,
5-HT2B receptors are known to activate mitogenic pathways
through the phosphorylation of Src kinase and extracellular
regulated kinases (ERK), as well as through receptor tyrosine
kinase transactivation,16,17 consistent with a role in regulating
heart valve interstitial cell proliferation.

The discoveries that 5-HT2B receptors were (1) abundantly
expressed in heart valves,18 (2) activated by fenfluramine and
its metabolite norfenfluramine,11,18 and (3) activated by other
valvulopathy-inducing drugs9,11 suggested that 5-HT2B receptors

were involved in the etiology of valvulopathy.11,18 Subsequently,
several other 5-HT2B agonists were also found to be valvulo-
pathogenic.9 Since 5-HT2B agonists have the potential of causing
valvulopathic side effects, it has been suggested that all pharma-
ceuticals shouldbe screened foractivity at 5-HT2B receptorsprior
to further commercial development.13,19

Similar to experimental high throughput screening (HTS),
virtual screening (VS) is typically employed as a “hit” identi-
fication tool.20 The experimental screening of all molecules
against all biological targets is generally cost- and time-
prohibitive. Therefore, preselection of compounds by VS that
have a reasonable probability to act against a given biological
target is highly attractive. Typically, VS approaches imply the
use of structure based methodologies; nevertheless, we have

Table 1. Chemical Structures of Marketed Drugs Known as 5-HT2B Receptor Agonists and Associated with VHD

aUnknown.
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repeatedly advocated the use of ligand based cheminfor-
matics approaches such as QSARmodels in virtual screening
(reviewed in a recent monograph21).

Herein, we report on the development of in silico screening
tools for identifying compounds with potentially serious
valvulopathic side effects. These tools can be employed as
filters to flag and deselect potentially harmful compounds
at the preclinical stage of drug development, thereby poten-
tially avoiding significant economic and human health con-
sequences incurred at later stages of drug discovery. To
achieve this goal, validated and externally predictive, binary
QSAR models were generated for 5-HT2B active vs inactive
compounds as defined in 5-HT2B functional assays. Similar
studies to develop QSAR models for 5-HT2B actives vs
inactives were reported recently by Chekmarev et al.22 How-
ever, in our investigations we considered a larger data set
containing the complete set of known valvulopathogens
reported by Huang et al.,23 and we validated our predictions
experimentally in binding assays.

To obtain the most statistically robust and predictive models,
we have employed the combinatorial QSAR strategy24,25 im-
plemented as part of our predictive QSAR modeling workflow
(reviewed in Tropsha and Golbraikh26). All models were sub-
jected to rigorous internal and external validation. The results
confirmed the high external prediction accuracy of our compu-
tational models, which led us to conclude that these models can
be used reliably to screen chemical databases to identify putative
5-HT2B actives. Screening the World Drug Index (WDI) data-
base using these models led to the identification of 122 possible
5-HT2B actives; 10 of these computational hit compounds were
experimentally tested in 5-HT2B radioligand binding assays at
the NIMH Psychoactive Drug Screening Program (PDSP),
UNCChapelHill,NC(http://pdsp.med.unc.edu/).Experiments
confirmed that 9 out of 10 compounds were true actives,
implying a hit rate of 90%. These results indicate the reliability
of our computational models as efficient predictors of com-
pounds’ affinity toward 5-HT2B receptors. We suggest that the
computational models developed in this study could be used as
drug liability predictors similar to commonlyusedpredictors27,28

of other undesired side effects such as carcinogenicity,29-31

mutagenicity,29,32,33 PGP binding,24 or hERG binding.34-37

Our models can be used to flag compounds that are expected
tobind to5-HT2B receptors, but theycannotdistinguishagonists
from antagonists. Nevertheless, as demonstrated in this study,
these putative 5-HT2B binders can be tested in functional assays
for their potential to activate 5-HT2B receptors to further assess
their valvulopathic potential.

Data Sets and Methods

Data Set.The PDSP recently screened roughly 2200FDA-
approved drugs and investigational, druglike molecules
against 5-HT2B receptors.23 However, this modeling study
was initiated prior to the completion of the screening of the
entire compound library. At the time this study began,
screening against 5-HT2B receptors had been completed for
800 compounds. This set became the basis for our model
development.After preprocessing of the 800-compounddata
set and deletion of duplicates, the final data set consisted of a
class of 146 “actives” and another class of 608 “inactives”.
Detailed PDSP protocols are available online (http://pdsp.
med.unc.edu/) and from Huang et al.23 All chemical struc-
tures were obtained from PubChem38 as SDF files. By the
time our modeling studies were completed, functional data

for the remainder of the 2200 compounds (1400 compounds)
had become available. These “new” data became a source for
additional, independent validation sets.

Preprocessing of the Data Set. For the purposes of this
work, the data were curated as follows: First, all molecules
were “washed” using the Wash Molecules tool in MOE39

(version 2007.09). Using this tool, we processed chemical
structures by carrying out several standard operations in-
cluding 2D depiction layout, hydrogen correction, salt and
solvent removal, chirality, and bond type normalization (all
details are found in the MOE manual39). Second, we used
ChemAxon Standardizer40 to harmonize the representation
of aromatic rings. Finally, the analysis of the normalized
molecular structures resulted in detection of 46 duplicate
compounds (i.e., different salts or isomeric states). The func-
tional data for duplicated compounds were found to be
identical, so in each case a single example was removed.
The curated subset of the original 5-HT2B data set used in
this work contains 754 unique organic compounds (146
actives and 608 inactives). All details about the data set are
available in Supporting Information.

Data Set Division for Model Building and Validation. All
QSAR models generated in this study to classify actives vs
inactives were validated by predicting two external valida-
tion sets. Each data set employed in QSAR studies was first
randomly divided into a modeling set and a validation set.
Additionally, as described above, an independent validation
set became available afterwe completed ourmodeling studies.
Details about this external set are available in Supporting
Information and from Huang et al.23

Another level of internal validation was achieved by
comparing model performance for training and test sets.
This approach is always employed as a part of our predictive
QSAR modeling workflow26 to emphasize the fact that
training-set-only modeling is not sufficient to obtain reliable
models that are externally predictive.41 Thus, for each collec-
tion of descriptors, the modeling sets were further parti-
tioned into multiple pairs of chemically diverse training and
test sets of different sizes using the Sphere Exclusion method
implemented in our laboratory.42 Only models that were
highly predictive on the test sets were retained for the
consensus prediction of the external validation sets. Finally,
only those models that were shown to be highly predictive on
both external sets were used in consensus fashion for virtual
screening of external compound libraries.

Computational Methods

A combinatorial QSAR approach (Combi-QSAR)24,25 was
used to generate classification models for actives vs inactives
(Figure 1). In this study, four types of descriptors were applied in
combination with three types of statistical methods.

Molecular Descriptors. Four sets of molecular descriptors
were considered in our modeling studies: Dragon,43 MolConnZ
(MZ),44 MOE,39 and subgraph descriptors (SG)45 developed in
this laboratory. Each type of descriptors was used separately
with each of the classification methods in the context of our
Combi-QSAR strategy.

DRAGON Descriptors. The Dragon Professional, version
5.4, software43 was used to calculate 2D descriptors. These
included topological descriptors, constitutional descriptors,
walk and path counts, connectivity indices, information indices,
2D autocorrelations, edge adjacency indices, Burden eigenval-
ues, topological charge indices, eigenvalue-based indices, func-
tional group counts, atom-centered fragments, and molecular
properties. The initial descriptor set was reduced by eliminating
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the constant and near-constant variables using built-in func-
tions within the software. The pairwise correlations for all
descriptors were examined, and one of the two descriptors with
a correlation coefficient R2 of 0.95 or higher was excluded. The
calculation procedures for these descriptors, with related litera-
ture references, are reported by Todeschini and Consonni.46

Finally, the remaining descriptors were normalized by range-
scaling so that their values were distributed within the interval
0-1.

MolConnZ Descriptors. The MolConnZ software44 available
from EduSoft affords the computation of a wide range of
topological indices of molecular structure. These indices in-
clude, but are not limited to, the following descriptors: valence,
path, cluster, path/cluster and chain molecular connectivity
indices,47-49

κ molecular shape indices,50,51 topological52 and
electrotopological state indices,53-56 differential connectivity
indices,47,57 graph’s radius and diameter,58 Wiener59 and Platt60

indices, Shannon61 and Bonchev-Trinajsti�c62 information in-
dices, counts of different vertices, and counts of paths and edges
between different types of vertices (http://www.edusoft-lc.com/
molconn/manuals/400). Descriptors with zero values or zero
variance were removed; the remaining descriptors were normal-
ized by range-scaling so that their values were distributed within
the interval 0-1.

MOE Descriptors. MOE 2007.09 software39 was used to
generate 2DMOE descriptors. These included physical proper-
ties, subdivided surface areas, atom and bond counts, Kier and
Hall connectivity47-49 and κ shape indices,50,51 adjacency and
distance matrix descriptors,58,59,63,64 pharmacophore feature
descriptors, and partial charge descriptors.39 Descriptors with
zero values or zero variance were removed; the remaining
descriptors were normalized by range-scaling so that their
values were distributed within the interval 0-1.

Subgraph Descriptors (SG). Frequent subgraph mining of
chemical structures is a novel approach to generating fragment
descriptors that was developed in our group.45 SG descriptors
are derived from each data set, i.e., they are not predefined
which gives the advantage of finding important chemical frag-
ments thatmay have not been defined a priori by other fragment
descriptor generatingmethods. The fragments are derived based
on recurring substructures found in at least a subset ofmolecules
(defined by a support value σ) in the data set. These recurring
substructures can implicate chemical features responsible for
compounds’ biological activities. First, chemical structures were
converted into labeled, undirected graph representations where

nodes were labeled by atom types and edges corresponded to
chemical bonds. The fast frequent subgraph mining (FFSM)
algorithm65 was then used to find common frequent subgraphs
for a given support value (σ), which is one of the variables
defined by the user that determines the size of the set of
subgraphs generated using FFSM. Obviously, the larger the
value of the support, the smaller the number of subgraphs
descriptors retrieved. As the support value decreases, the num-
ber of subgraphs increases dramatically. Redundant subgraphs
were identified and removed leaving only the so-called “closed
subgraphs”. A subgraph SGi is closed in a database if there
exists no supergraph SGj such that SGi⊆ SGj and σSGi = σSGj.

However, subgraph SGi would not be deleted if it also occurs by
itself (not as part of the SGj) in the graph database. Removing
redundant subgraphs (fragments) reduces the number of sub-
graphs descriptors drastically and therefore makes the sub-
sequent calculations more efficient. The frequency of individual
“closed subgraphs” in eachmolecule of the data set is calculated
and used as the descriptor value for eachmolecule. In this study,
a support value of 12%was used, and the upper size limit of the
generated subgraphs was 7 atoms.

Balancing the Data Set Using Similarity Searching. The data
set used for model building was imbalanced, consisting of 146
actives and 608 inactives. Therefore, only a subset of the larger
class of inactives of approximately the same size as the actives
was used in model building unless otherwise indicated. This
subset was selected to include inactives that were most similar to
the actives. Given the vast array of available chemical descrip-
tors and the large number of similarity measures, it is always
difficult to decide a priori which combination of descriptors/
similarity metrics to use. This problem has been highlighted in
several recent publications.66,67 Therefore, similarity searching
studies were performed using three types of molecular descrip-
tors, fingerprints (FP), Dragon, and MZ, and applying two
similarity metrics, i.e., Euclidean distance and Tanimoto coeffi-
cient (Tc). The similarity cutoff was chosen to obtain the most
balanced (with roughly equal number of compounds from each
class) subset of compounds.

Fingerprints (FP). One-hundred-sixty-six MACCS68 struc-
tural keys implemented in MOE 2007.09 software39 were calcu-
lated for all compounds. The similarity searchingwas performed
using an in-house written script applying Tanimoto coefficients
for similarity measures.

Dragon Descriptors. Normalized Dragon descriptors of the
original data set were employed to calculate Euclidean distances

Figure 1. Workflow for QSAR model building and validation as applied to the 5-HT2B data set (see text for abbreviations).
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between all compounds in the data set; variable similarity
thresholds were used to down-sample the larger class (inactives).
Although many schemes could be considered for down-
sampling the larger classes, we used the similarity threshold
based approach, since it restricts the larger class to compounds
most similar to the smaller class molecules. This approach
makes it more challenging to develop statistically significant
models capable of discriminating smaller class compounds
from most chemically similar molecules in the larger class.
Therefore, it increases the robustness of the binary QSAR
models.

MolConnZ Descriptors (MZ). Similar procedures to those
described above for Dragon descriptors were used.

QSAR Methods. k Nearest Neighbors (kNN) QSAR. The
kNN QSAR method69 is based on the k nearest neighbors
principle and the variable selection procedure. It employs the
leave-one-out (LOO) cross-validation (CV) procedure and a
simulated-annealing algorithm70,71 to optimize variable selec-
tion. The procedure starts with the random selection of a
predefined number of descriptors from all descriptors. If the
number of nearest neighbors k is higher than 1, the estimated
activities ŷi of compounds excluded by the LOO procedure are
calculated using the following formula:

ŷi ¼

Pk
j¼ 1

yjwij

Pk
j¼ 1

wij

ð1Þ

where yj is the activity of the jth nearest neighbor of compound I.
Weights wij are defined as

wij ¼ 1þ dij
� �2
Pk
j0 ¼ 1

dij0

0
BBBB@

1
CCCCA

- 1

ð2Þ

and dij is the Euclidean distance between compound i and its jth
nearest neighbor. However, if the number of nearest neighbors
k is equal to 1, then the estimated activity ŷiof the compoundwill
be equal to the activity of this one nearest neighbor.

For classification kNN, the predicted ŷi values (see expression 1)
are rounded to the closest whole numbers (which are, in fact, the
class numbers), and the prediction accuracy (correct classifica-
tion rate, CCRtrain) is calculated as follows:

CCR ¼ 0:5
Ncorr

1

Ntotal
1

þ Ncorr
2

Ntotal
2

 !
ð3Þ

whereNj
corr andNj

total are the number of correctly classified and
total number of compounds of class j ( j = 1, 2). Then a
predefined small number of descriptors are randomly replaced
by other descriptors from the original pool, and the new value of
CCRtrain is obtained. If CCRtrain(new)>CCRtrain(old), the new
set of descriptors is accepted. If CCRtrain(new)eCCRtrain(old),
the new set of descriptors is accepted with probability p =
exp(CCR(new) - CCR(old))/T or rejected with probability
(1 - p), where T is a simulated annealing (SA) “temperature”
parameter. During this process, T is decreasing until a predefined
threshold. Thus, the optimal (highest) CCRtrain is achieved. For the
prediction, the final set of selected descriptors is used, and expres-
sions 1 and 2 are applied to predict activities of compounds of
the test sets. Then the activities are rounded to the closest
whole numbers, and the correct classification rate for the test
set is calculated using formula 3.

In the casewhen compounds belong to two classes (e.g., active
and inactive compounds), a 2 � 2 confusion matrix can be
defined, whereN(1) andN(0) are the number of compounds in the
data set that belongs to classes (1) and (0) respectively. TP, TN,

FP, andFNare the number of true positives (actives predicted as
actives), true negatives (inactives predicted as inactives), false
positives (inactives predicted as actives), and false negatives
(actives predicted as inactives), respectively. The following
classification accuracy characteristics associated with confusion
matrices are widely used inQSAR studies: sensitivity (SE=TP/
N(1)), specificity (SP = TN/N(0)), and enrichment E = (TP)N/
[(TP þ FP)N(1)]. In this study, we have employed normalized
confusionmatrices.Anormalizedconfusionmatrix canbeobtained
from the non-normalized one by dividing the first column by N(1)

and the second column by N(0). Normalized enrichment is defined
in the sameway asE but is calculated using a normalized confusion
matrix: En = (2TP)N(0)/[(TP)N(0) þ (FP)N(1)]. En takes values
within the interval of [0, 2].25,72

Classification Based on Association (CBA). This method
integrates both classification rule mining,73,74 which aims to
discover a small set of rules in the database that forms an
accurate classifier, and association rule mining,75 which finds
all the rules existing in the database that satisfy some minimum
support and minimum confidence constraints. For association
rule mining, the target of discovery is not predetermined, while
for classification rule mining there is one and only one prede-
termined target. The integration is done by focusing onmining a
special subset of association rules, called class association rules
(CARs). An efficient algorithm is also used for building a
classifier based on the set of discovered CARs.

The CBA algorithm76,77 consists of two parts, a rule generator,
which is based on the a priori algorithm for finding association
rules, andaclassifier builder.The candidate rule generator is similar
to the a priori one. The difference is that CBA updates the support
value in each step while the a priori algorithm only updates this
value once. This allows us to compute the confidence of the
ruleitem. A ruleitem is of the form Æcondset, yæ where condset is a
set of items, y ∈Y is a class label. The support count of the condset
(called condsupCount) is the number of cases in the data set (D)
that contain the condset.

Next, a classifier is built from CARs. To produce the best
classifier out of the whole set of rules would involve evaluating
all the possible subsets of it on the training data and selecting the
subset with the right rule sequence that gives the least number of
errors. There are 2m such subsets, where m is the number of
rules. It is a heuristic algorithm. Given two rules ri and rj, ri
precedes rj if (1) the confidence of ri is greater than that of rjor (2)
their confidences are the same but the support of ri is greater
than that of rj or (3) both the confidences and the supports of ri
and rj are the same but ri is generated earlier than rj. IfR is a set of
generated rules (i.e., CARs) and D the training data, the basic
idea of the algorithm is to choose a set of high precedence rules in
R to cover D. The classifier follows this format: Ær1, r2, ..., rn,
default_classæ, where ri ∈ R. In classifying an unseen case, the
first rule that satisfies the case will classify it. If there is no rule
that applies to the case, it takes on the default class.

The descriptors used with CBA need to be discrete in nature76

as is the case with SG descriptors but not Dragon, MolConnZ,
orMOE.Hence, this method was only used with SG descriptors
using CBA (version 2.1) software.78

Distance Weighted Discrimination (DWD). This method was
initially proposed by Marron and Todd79 with the goal of
improving the performance of SVM80,81 in high dimensional
low sample size (HDLSS) contexts. The main idea is to improve
upon the criterion used for “separation of classes” in SVM.
SVM has data piling problems along the margin because it is
maximizing the minimum distance to the separating plane, and
there are many data points that achieve theminimum. A natural
improvement is to replace the minimum distance by a criterion
that allows all the data to have an influence on the result. DWD
does this by maximizing the sum of the inverse distances. This
results in directions that are less adversely affected by spurious
sampling artifacts. The major contribution of this new discrim-
ination method is that it avoids the data piling problem, to give
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the anticipated improved generality. Like SVM, DWD is based
on computationally intensive optimization; however, while
SVM uses well-known quadratic programming algorithms,
DWD uses interior-point methods for so-called second-order
cone programming (SOCP) problems.82 Detailed discussion of
these issuesmay be found inMarron andTodd (2007),79which is
available along with its Supporting Information at https://
genome.unc.edu/pubsup/dwd/. All DWD computations were
performed using the DWD software83 written in MATLAB84

and kindly provided by Dr. Marron.
Robustness of QSAR Models. Y-Randomization test is a

widely used validation technique to ensure the robustness of a
QSAR model.85 This test includes (i) randomly shuffling the
dependent-variable vector,Y-vector of training sets (class labels
in this study), and (ii) rebuilding models with the randomized
activities (class labels) of the training sets. All calculations are
repeated several times using the original independent-variable
matrix. It is expected that the resulting QSAR classification
models, built with randomized activities for the training set,
should generally have low CCRs for training, test, and external
validation sets. It is likely that sometimes, though infrequently,
high CCR values may be obtained because of a chance correla-
tion or structural redundancy of the training set. However, if
some QSAR classification models obtained in the Y-randomi-
zation test have relatively high CCR, it implies that an accep-
table QSAR classification model cannot be obtained for the
given data set by the particular modeling method. Y-Randomi-
zation test was applied to all data sets considered in this study,
and the test was repeated five times in each case.

Applicability Domain of kNN QSAR Models. Formally, a
QSARmodel can predict the target property for any compound
for which chemical descriptors can be calculated. However,
since the training set models are developed in kNN QSAR
modeling by interpolating activities of the nearest neighbor
compounds, a special applicability domain (i.e., similarity
threshold) should be introduced to avoid making predictions
for compounds that differ substantially from the training set
molecules.86

The similarity was estimated using Euclidean distances in
high-dimensional descriptors space. Compounds with the smal-
lest distance between them have the highest similarity. The
distribution of distances (pairwise similarities) of compounds
in our training set is computed to produce an applicability
domain threshold, DT, calculated as follows:

DT ¼ yþ- Zσ ð4Þ
Here, yh is the average Euclidean distance of the k nearest
neighbors of each compound within the training set, σ is the
standard deviation of these Euclidean distances, and Z is an arbi-
trary parameter to control the significance level. On the basis of
previous studies, we set the default value of this parameter to 0.5,
which formally places the boundary for the applicability domain at
one-half of the standard deviation. Thus, if the distance of the
external compound from at least one of its nearest neighbors in the
training set exceeds this threshold, no prediction is made.86 In this
study two types of applicability domains were employed. First is a
global applicability domain that ensures some level of global
similarity (using all descriptors for similarity calculations) between
the predicted compounds and the compounds in the modeling set.
The second is a local domain which is the applicability domain of
each of the individual models using only the descriptors selected for
the model building.

Consensus Prediction.Our experience suggests that consensus
prediction of the target property for external compounds, i.e.,
when the compound activity is calculated by averaging values
predicted by all individual models that satisfy our acceptability
criteria, generally provides themost stable and accurate solution.87

In general, consensus prediction implies averaging the predic-
tions for each compound by majority voting for classification

QSAR models, using all models passing the validation criteria
(e.g., CCRtraing 0.70 andCCRtestg 0.70). In order to determine
the confidence in the obtained predictions, we need to define a
consensus score. The consensus scores employed in this study take
into account the total number of models used to predict the
compound’s activity and the number of models that predicted
the compound to belong to a specific class. Since we define two
classes of compounds, i.e., class 1 (actives) and class 0 (inactives),
some models may predict a compound to belong to class 0 and
others may predict it to belong to class 1. As a result, a consensus
score between 0 and 1 will be obtained for each of the predicted
compounds. As an additional measure of confidence (and an
additional applicability domain criterion), we only accepted those
predictions that had an average predicted value (consensus score)
above 0.7 (for actives) or below 0.3 (for inactives).

Virtual Screening and Compound Selection for Experimental
Validation. To identify putative actives, validated consensus
models generated for 5-HT2B ligands were used for virtual
screening of about 59 000 molecules within the WDI chemical
library; the selection of hits was limited by the applicability
domains of the models.88 One-hundred-twenty-two compounds
were identified as VS hits (by consensus agreement between all
accepted models; see Table S1 of Supporting Information for
details), and 10 structurally diverse and commercially available
hits were purchased from different suppliers and tested at PDSP
in 5-HT2B radioligand binding assays.

Results and Discussion

Combinatorial QSAR Modeling of 5-HT2B Actives vs

Inactives. Balancing the Data Set. The original data set of
146 actives and 608 inactives was first balanced by downsizing
the class of inactives. Similarity searching between active and
inactive compounds using Tc cutoff of 0.7 resulted in 196
inactives (that were similar to at least one active compound
withTc above 0.7),whichwere combinedwith the 146actives to
form the modeling set of 342 compounds. Dragon and MZ
descriptorswere generated for this 342-compoundmodeling set
to be used separately with kNN.However, similarity searching
using Dragon and MZ descriptors and applying Euclidean
distance-based threshold resulted in a 304- (146 actives and 158
inactives) and 325-compound (146 actives and 179 inactives)
modeling sets, respectively. Thus, slightly different modeling
sets were used depending on the type of descriptors.

kNN Classification. kNN method was used with each of
the following descriptor types: DRAGON,MZ,MOE, and SG
descriptors. Models were built for the three data sets resulting
from the down-sampling of the original data set. First, a
validation set (15-20% of the data set) was excluded from
each of the resulting data sets randomly. The compounds in the
remaining modeling set (85-80% of the original data set)
were divided into multiple pairs of training and test sets (28-
40 divisions). Multiple QSAR models were generated indepen-
dently for all training sets and applied to the test sets. Generally,
we accepted models with CCR values for both the training and
test set greater than 0.70. kNN combined with subgraphs and
Dragondescriptorswere the twobest performingmethodsbased
on validation set statistics (Table 2). kNNsubgraphs (kNN-SG)
had CCRevs = 0.80, while kNN-Dragon gave CCRevs = 0.72.

Results of the Y-randomization test (Table 2) confirmed
that kNN classification models with CCRtrain and CCRtest

values of g0.70 were robust. None of the models with
randomized class labels of the training set compounds had
CCRrand > 0.54 for any data set.

Classification Based on Association (CBA). The CBA
methodwas applied to classify the data set using SGdescriptors.
A data set of 342 compounds (146 actives and 196 inactives),
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resulting from the downsizing process with FP and Tanimoto
distances,wasused.Thedata setwas split randomly into training
(267 compounds) andvalidation sets (75 compounds).A total of
1371 closed frequent subgraphs were generatedwith FFSM (see
methods section) from the training set using a support value of
12% and a maximum size limit of the fragments of 7. The
training set consisting of 267 compounds (111 actives and 156
inactives) was then used to build the classifier in CBA. The
classifier gave a CCRtrain of 0.79. Then the validation set
consisting of 75 compounds (35 actives and 40 inactives) was
used to assess the robustness of the classifier. The CCRevs was
0.65, which is not as high as the CCR value for the training set.

DWDModeling. The DWDmethod was applied to classi-
fy the data set using Dragon descriptors. A data set of 304
compounds (146 actives and 158 inactives), resulting from
the downsizing process with Dragon descriptors and Eu-
clidean distances, was used. The data set was split randomly
into training (244 compounds) and validation sets (60
compounds). A total of 387 Dragon descriptors were gener-
ated for the training set. The training set consisting of 244
compounds (120 actives and 124 inactives) was then used to
build the DWD model. The DWD model was able to group
compounds in this data set based on their biological classes
with CCRevs= 0.70 (TP=18, TN=24, FP=10, FN=8).
DWD was further used to rank Dragon descriptors accord-
ing to their importance for discriminating the two classes of
compounds (actives vs inactives). DWD uses class label
information where positive (for actives) and negative (for
inactives) signs are assigned to each descriptor value to
indicate its importance to the corresponding class. The top
20 highlyweighted descriptors (based only onweights’ values
and ignoring the signs) are presented in Table S2 of Support-
ing Information.

Comparison of Binary QSAR Approaches for Classifying

5-HT2B Actives vs Inactives. The performance of different
binary QSAR approaches employed as part of combinatorial
QSAR strategy for 5-HT2B, and based on validation set statis-
tics, is summarized in Figure 2. kNN-SG, and kNN-Dragon
were thebest performingmethods for classifying 5-HT2B actives
vs inactives based on validation set statistics (Table 2), yielding
the highest CCRevs of 0.80 in the case of kNN-SG. On the
contrary, kNN-MZ was the worst performing method with a
CCRevs of 0.57, which was very close to random. It was also
interesting to see that kNN-SG performed much better than
CBA-SGwithCCRevs=0.80 in the former case andCCRevs=
0.65 in the latter. These results confirm the importance of
employing the combinatorial QSAR approach to find themost
predictive QSAR method/descriptor combination for each
specific data set.

Our models also indicated that the nature of the descrip-
tors used has a dramatic effect on the performance of the

modeling methods. It was clear that MOE and MolConnZ
descriptors did not perform very well irrespective of the
applied modeling techniques. On the contrary, Dragon
descriptors afforded significant models with all methods,
for both validation and external sets.

Additional Model Validation. Model Validation by Pre-

dicting Drugs Known To Be 5-HT2B Actives and Valulopatho-

gens. Both fenfluramine and dexfenfluramine (known to be
5-HT2B actives and agonists, which were not included in our
modeling sets) were predicted as 5-HT2B actives using con-
sensus models to classify actives vs inactives. The consensus
scores using kNN-Dragon were 0.79 for both compounds.
Our previous studies suggest that consensus prediction that
is based on the results obtained by all validated predictive
models generally provides the most stable solution.87 A
5-HT2B active compound can have consensus scores in the
interval [0.5-1.0]. If the value is closer to 1.0, our confi-
dence in the prediction is greater. Therefore, we can claim
that both compounds were predicted as actives with statisti-
cally significant consensus scores.

These results indicate our validated models could have
predicted the possible dangerous side effects of these two
drugs by suggesting that they may be 5-HT2B actives. This
prediction would have suggested that these compounds
should be tested experimentally in 5-HT2B functional assays
and prevented their further development as potentially un-
safe medicines. This example illustrates the potential use of
models developed in this study as computational drug safety
alerts.

Model Validation by Predicting an External Set. An addi-
tional 16-compound set was obtained from PDSP after we

Table 2. Performance of kNN Classification Methods to Classify Actives vs Inactives Based on External Validation Set Statistics

confusion matrix statistics for the models

model no. modelsa N(1)b N(0)c TP TN FP FN SE SP En(1) En(0) CCRevs
d CCRrand

e

Af 908 26 34 20 23 11 6 0.77 0.68 1.41 1.49 0.72 0.49

Bg 235 38 36 22 20 16 16 0.58 0.56 1.13 1.14 0.57 0.50

Ch 619 32 38 17 29 9 15 0.53 0.76 1.38 1.24 0.65 0.53

Di 387 30 40 16 29 11 14 0.04 0.73 0.26 1.90 0.63 0.50

Ej 123 30 40 20 26 14 10 0.67 0.65 1.31 1.32 0.66 0.46

Fk 93 30 40 23 33 7 7 0.77 0.83 1.63 1.56 0.80 0.54
aNumber of models with CCRtrain and CCRtest g 0.70. bN(1), number of actives. c N(0), number of inactives. dCCRevs, correct classification rate

of the consensus models using the external validation set. eCCRrand, correct classification rate of the random models using the external validation set.
fA, kNN-Dragon. gB, kNN-MZ. hC, kNN-Dragon-FP. iD, kNN-MZ-FP. jE, kNN-MOE-FP. kF, kNN-SG.

Figure 2. Comparison ofCCRvalues for the external validation set
(CCRevs) for different QSARmodels developed to classify actives vs
inactives. CCRevs values for models built with both real (blue) and
randomized (red) activities of the training sets are shown (see text
for abbreviations).

http://pubs.acs.org/action/showImage?doi=10.1021/jm100600y&iName=master.img-002.jpg&w=240&h=141
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finished out modeling studies. This external set was used to
further assess the robustness and the predictive power of our
models. All 16 compounds were 5-HT2B actives including 4
agonists and 12 antagonists.

The 16 external compounds were predicted using all consen-
susmodelsbuilt toclassifyactivesvs inactives.kNN-Dragonwas
the best performingmethod on this external set with a CCRex of
0.81. Predictions were made by applying local model applic-
ability domainswithZ=0.5 (seeApplicabilityDomainofkNN
QSARModels). Itwas interesting to find thatkNN-Dragonhad
CCRg 0.72 with both the validation (CCRevs = 0.72) and the
external (CCRex = 0.81) sets. However, kNN-SG (the best
performing method on validation sets) was not as good with
the external set (CCRex=0.65) as it was with the validation set
(CCRevs=0.80). CBA-SG gave aCCRex=0.65, whichwas con-
sistent with its performance with the validation set (CCRevs=
0.65) but less than CCRtrain (0.79). The latter results using SG
descriptors with kNN and CBA might be due to the limitation
that frequent subgraphs are derived from the training set
compounds; therefore, it is possible that fragments that are
frequent in the external set are not represented in the frequent
subgraphs used for prediction.Our current applicability domain
filter, which is calculated using the fragments in the training set,
does not account for this possibility. It is clear that a more
stringent applicability domain filter could be applied in this case,
which uses the distribution of subgraphs counts between the
training and test set, but this has not been implemented yet
within our current method.

Importance of Variable Selection. Since kNN-Dragon was
the best performingmethod to classify actives vs inactives based
on the results for all validation sets, we thought it would be
interesting to check the performance of kNN using all 387
Dragon descriptors, generated for the actives vs inactives mod-
eling set, without variable selection. The results of this test are
shown in Table 3. Comparison of modeling results for kNN-
Dragon (CCRevs = 0.72) vs kNN-Dragon with no variable
selection (NVS) (CCRevs=0.52) clearly indicates that variable
selection is a vital part of modeling. Furthermore, the top 20
most frequent descriptors (MFD) selected by kNN models
(Table S3 of Supporting Information) and top 20 highly
weighted descriptors by DWD based only on weights and
ignoring the sign (Table S2 of Supporting Information) were
used independently with the kNN method (with no variable
selection) to predict actives vs inactives (Table 3). Models built
with either the top 20 DWD-selected Dragon descriptors or
MFDfromDragon-kNNandusing1-5nearestneighborsgave
CCRevs ≈ 0.5 (Table 3). These results illustrated again that
SA-based variable selection procedures implemented in our
kNNQSARmethod69 lead to models with the highest external
predictive power compared to any other approach not relying
on variable selection for model optimization.

Mechanistic interpretability is frequently regarded as a very
important feature of QSAR models. We generally argue that
only models that have been extensively validated on external
data sets and identified experimentally confirmed hits should be
subjected to interpretation. Furthermore, very few classes of
models, specifically, those based on (multiple) linear regression
and small number of descriptors, can afford a relatively straight-
forward interpretation. The interpretation of multiparametric
statistical models developed with nonlinear optimization algo-
rithms (as in this study) should be attempted with great care
because of strong and often poorly understood interplay be-
tween descriptors. Furthermore, althoughwe could foresee that
in some casesmedicinal chemists maywant tomodify their can-
didate compounds to prevent 5HT2B binding, the tools devel-
oped in this study are predominantly intended for virtual
screening of libraries of drug candidates to flag and possibly
eliminate compounds that are likely tobind5HT2B receptor, not
to design new compounds, and any compound designed by
chemists could be passed through our models. Therefore, we
only restricted the discussion in this paper to the most frequent
descriptors found by all acceptable kNN models and the most
highly weighted descriptors selected by DWD to stress that the
process of variable selection employed as part of model optimi-
zation has indeed converged on a small number of descriptors.

Virtual Screening of the World Drug Index Database To

Identify Putative 5-HT2B Ligands. Since our models proved
to be reasonably accurate based on two external validation sets,
we used the best models to mine a large external database of

Table 3. Comparison between Different kNN-Dragon QSAR Models Generated with or without Variable Selection

confusion matrix statistics for the models

model no. modelsa N(1)b N(0)c TP TN FP FN SE SP En(1) En(0) CCRevs
d coveragee (%)

Af 908 26 34 20 23 11 6 0.77 0.68 1.41 1.49 0.72 100

Bg 1 26 34 10 22 10 8 0.38 0.65 1.13 1.36 0.52 83

Ch 1 26 34 14 15 19 9 0.54 0.44 0.98 1.12 0.49 95

Di 1 26 34 14 15 19 9 0.54 0.44 0.98 1.12 0.49 95
aNumber of models with CCRtrain and CCRtest g 0.70. bN(1), number of actives. cN(0), number of inactives. dCCRevs, correct classification rate of the

consensus models using the external validation set. eCoverage: percentage of predicted compounds, and coverage is the % of the external set compounds
predicted by the models. fA, kNN-Dragon. gB, kNN-Dragon-NVS where kNN model was generated using all 387 Dragon descriptors with no variable
selection and1nearest neighbor (NN). hC,kNN-Dragon-MFDwhere thekNNmodelwas generatedwith top20most frequentDragondescriptors and1NN.
iD, kNN-Dragon-DWD where the kNNmodel was generated with top 20 highly weighted Dragon descriptors by DWD and 1 NN.

Figure 3. Steps of the virtual screening of the WDI database to
identify putative 5-HT2B ligands (see text for the abbreviations).

http://pubs.acs.org/action/showImage?doi=10.1021/jm100600y&iName=master.img-003.jpg&w=205&h=211
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approved and potential drugs for putative 5-HT2B actives.
An important condition that ensures reliable predictions by
themodel is the use ofAD. Therefore, two types ofADwere
employed in the virtual screening of compound databases.
The first is a global AD that acts as a filter and ensures some
level of global similarity between the predicted compounds

and the compounds in the modeling set. The second is a
local AD which is defined for each of the individual
classification models.

TheWDI database of about 59 000 compounds (approved
or investigational drugs) was used for virtual screening
(Figure 3). This original collection had many duplicates

Table 4. Experimental Validation Results for the 10 Computational Hits Predicted as 5-HT2B Ligands as a Result of QSAR-BasedMining of theWDI
Chemical Screening Library

http://pubs.acs.org/action/showImage?doi=10.1021/jm100600y&iName=master.img-004.png&w=387&h=600
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(i.e., many salt forms for the same chemical entity). The
duplicates were removed using MOE, keeping unique struc-
tures and deleting duplicates. We also removed all com-
pounds included in our modeling and external validation
sets. Dragon descriptors were generated for the remaining
46 859 unique compounds in the database; 926 compounds
were excluded because Dragon was unable to calculate at
least one of the descriptors generated for the modeling set.
The remaining 45933 compounds were then subjected to a
global AD filter for the actives vs inactivesmodeling set using a
strict Z cutoff of 0.5 (which formally places the allowed
pairwise distance threshold at the mean of all pairwise distance
distribution for the training set plus one-half of the standard
deviation). Obviously, increasing the AD would increase the
number of computational hits identified by virtual screening.
However, our experience suggests that such increase is typically
accompanied by the decrease in prediction accuracy. Addition-
ally,we required that thenearest neighbor in themodeling set of
a compound from the virtual library be an active. The resulting
7286 compounds were then classified into actives vs inactives
usingDWD-Dragon classifier resulting in 891 actives. Next, all
kNN-Dragon models with CCRtrain and CCRtest g 0.70 were
employed in consensus fashion to predict these 891 compounds
resulting in a selection of the 500 active hits. At this point, SG
descriptors were generated for these 500 molecules. CBA-SG
classifier followed by kNN-SG consensus models were used as
final filters for the determination of 122 compounds regarded
as putative 5-HT2B actives.

Experimental Validation. Ten structurally diverse hits
(1-10; see Table 4) were selected from the final consensus
virtual screening hits for further experimental validation taking
into account both their commercial availability and cost (see
Table 4). To our satisfaction, nine compounds were confirmed
to inhibit 5-HT2B radioligandbinding,which implies a hit rate of
90%. Ki values were in the range 0.8-3127 nM, with four
compounds having Ki values of <100 nM. The four highest
affinity compoundswere4 (Ki=33nM; seeFigure 4A),7 (Ki=
0.8 nM; see Setola et al., 20039), 9 (Ki = 70 nM; see Figure 4B),
and 10 (Ki = 69 nM; see Figure 4C). It should be noted that 7,
though not included initially in our data set, was known to be a
valvulopathic compound and had been tested against 5-HT2B

receptors in both binding (Ki = 0.8 nM)9 and functional assays
(pEC50 for 5-HT2B-mediated calcium flux was 7.67).23 In order
to determine the activity of the remaining eight 5-HT2B ligands,
all compounds were tested at the PDSP in 5-HT2B functional
assays. Results indicated that methylergometrine was the only
compound among the 9 5-HT2B ligands that possessed strong
agonist activity.

This lowhit rate of 11.1%for identifying validated agonists is
in fact not surprising in light of Huang et al.’s23 major finding
that potent 5-HT2B receptor agonism is a relatively rare occur-
rence among drugs and druglike compounds. However, to
arrive at such conclusions, Huang et al. screened a composite
library containing three publicly available collections of FDA-
approved and investigational medications and one internally
compiled library. Of the approximately 2200 compounds
screened, 27 5-HT2B receptor agonists were identified; thus,
the validated hit rate was 1.2%.

These results illustrate that the validatedQSARworkflow, as
employed in this paper, could be used as a general tool for
identifying 5-HT2B ligands by the means of virtual screening of
chemical libraries using rigorously built QSAR models. As we
demonstrated in this study,ourmodels identify a relatively small
number of VS hits, making it feasible to employ experimental

tools to validate predictions in 5-HT2B binding and functional
assays. Ten compounds selected from a large external library
have been tested experimentally in this proof-of-concept study
resulting in very high experimentally confirmed hit rate. The list
of all compounds predicted to be 5-HT2B actives is available in
the Supporting Information (Table S1).

To verify the diversity of the experimentally validated
hits, we have compared the results of QSAR-based virtual
screening with simple similarity searches. Similarity calcu-
lations were done using two different descriptor-metric
combinations: (1) MACCS structural keys and Tanimoto
coefficients (as a standard similarity searching approach,
see Table S9 and Figure S1 in Supporting Information) and
(2) Dragon descriptors and Euclidean distances (to com-
pare directly with our best performing QSAR models of
kNN-Dragon, see Table S10 and Figure S2 in Supporting
Information). The nearest neighbor compounds (based on
Tanimoto similarities and MACCS keys) from the active

Figure 4. Competition binding at 5-HT2B receptors for (A) 4 (triangle)
and SB206553 (square), (B) 9 (triangle) and SB206553 (square), and
(C) 10 (triangle) and chlorpromazine (square), versus [3H]LSD.

http://pubs.acs.org/action/showImage?doi=10.1021/jm100600y&iName=master.img-005.jpg&w=240&h=447
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compounds in the data set and the 10 experimentally
validated VS hits are reported in Table 5. Results of
similarity analyses indicated that neither technique would
be able to efficiently identify the diverse hits obtained with
our methods (see Supporting Information for details).
Hence, our studies illustrated the power of combi-QSAR-
based VS in prioritizing compounds (which are not just
close analogues of the modeling set compounds) from

screening libraries to achieve high success rates when
experimentally validated.

We also think that agonist vs antagonist models will be
highly useful asmore data about agonist compounds become
available. The small number of known 5-HT2B agonists
made it impossible at this stage to develop statistically
significant models that could distinguish agonists from
antagonists. Thus, the current study was limited to building

Table 5. Nearest Neighbor Compounds from the Active Compounds in the Data Set and the 10 Experimentally Validated VS Hits

http://pubs.acs.org/action/showImage?doi=10.1021/jm100600y&iName=master.img-006.png&w=499&h=588
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binder vs nonbinder models. We will continue with our
efforts to develop quantitative 5-HT2B agonist predictors
as we accumulate more experimental data.

Conclusions

QSAR models are becoming increasingly attractive as
robust computational tools for virtual screening because of
both their computational efficiency and success rates
[reviewed in ref 26 as well as in a recent monograph21]. In this
study, we have applied a combinatorial QSAR approach to a
data set of 800 compounds experimentally annotated as
5-HT2B receptor agonists, antagonists, and inactives resulting
in statistically validated and externally predictive models.
Specifically, we have applied a combi-QSAR approach utiliz-
ing three different classification methods (kNN, CBA, and
DWD) and four different descriptor types (Dragon, MZ,
MOE, and SGs) to generate classification QSAR models to
discriminate between 5-HT2B actives (agonists and antag-
onists) from inactives. Predictive models with classification
accuracies as high as 0.80 for actives vs inactives, as estimated
on external validation sets, were obtained.

Classification models for actives vs inactives were further
validated by predicting an external validation set obtained
after we completed themodeling studies. The high accuracy of
prediction for the second external validation set proved that
our models were indeed rigorous. Therefore, we posited that
our studies afforded a robust computational tool to predict
potential 5-HT2B activity and consequently prioritize hits for
testing in functional 5-HT2B assays to predict valvulopathic
side effects of drugs and drug candidates that act as 5-HT2B

agonists. We suggested that this computational predictor
could be used to eliminate high risk compounds at the early
stages of the drug development process. To illustrate this
point, we have used this predictor retrospectively to evaluate
the valvulopathic potential of two drugs withdrawn from the
U.S. market for this reason, i.e., fenfluramine and dextrofen-
fluramine. Both drugs were not included in our modeling set,
and both were indeed predicted with high confidence as
actives for binding to 5-HT2B receptors.

Encouraged by our model validation results, we have app-
lied these models for virtual screening of the 59000 com-
pounds in WDI database. Our classification strategies identi-
fied 122 potential 5-HT2B ligands. Ten structurally diverse VS
hits were experimentally tested at PDSP. Nine compounds
were experimentally confirmed as 5-HT2B ligands, thereby
demonstrating a very high success rate of 90%.

The predictor developed in this report is similar in its poten-
tial use to other predictors of drug liability such as carcino-
genicity and mutagenicity that are widely used in pharmaceu-
tical industry. For instance, theTOPKATprogramavailable in
the Discovery Studio89 is a QSAR-based system that generates
and validates accurate, rapid assessments of various types of
chemical toxicity solely from a chemical’s molecular structure.
In contrast, our predictor is a unique specialized tool for the
prediction of 5-HT2B activity and therefore prioritizing com-
pounds for functional testingagainst 5-HT2B receptors toassess
their valvulopathic potential. Therefore, this predictor can be
used, along with other computational chemical health risk
assessment tools, to evaluate compounds’ safety at early stages
of the drug development. It can be used as well to verify that all
drugs available on the market are free from possibly fatal
valvulopathic risk. This predictor will be made publicly avail-
able at theChemBench server established in theLaboratory for

Molecular Modeling (http://chembench.mml.unc.edu/). We
will also gladly apply this predictor to any compound library
that may be of interest to any researcher.

Experimental Section

Radioligand Binding Assays. This screen was performed by the
National Institute of Mental Health Psychoactive Drug Screening
Program (PDSP). Radioligands were purchased by PDSP from
Perkin-Elmer or GEHealthcare. Competition binding assays were
performed using transfected or stably expressing cell membrane
preparations as previously described (Shapiro et al. 2003;90 Roth
et al. 200291) and are available online (http://pdsp.med.unc.edu).
All experimental details are available online (http://pdsp.med.unc.
edu/UNC-CH%20Protocol%20Book.pdf).

Chemistry. Chemical compounds predicted as hits from the
virtual screening were obtained from commercial suppliers
according to their availability. All compounds were ordered to
haveg95% purity. Additionally, all compounds were subjected
to purity assessment using LC/MS by the Center for Integrative
Chemical Biology and Drug Discovery at UNC-Chapel Hill,
NC. LC/MS spectra of all compounds were acquired from an
Agilent 6110 series system with UV detector set to 220 nm.
Samples were injected (5 uL) onto an Agilent Eclipse Plus
4.6 mm � 50 mm, 1.8 μm, C18 column at room temperature.
A linear gradient from 10% to 100% B (MeOH þ 0.1% acetic
acid) in 5.0 min was followed by pumping 100% B for another
2 min, with A being H2O þ 0.1% acetic acid. The flow rate was
1.0 mL/min.
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